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ABSTRACT

We describe the implementation of a new algorithm for tracking nearest-
neighbours, the Monotonic Lagrangian Grid (MLG), in a recently developed
{ Molecular Dynamics (MD) code used to study sedimentation phenomena.
The MLG is a highly efficient algorithm for tracking particle positions
which is based on the assignment of a set of indices to each particle in the
system. These indices are ordered according to the relative positions of
each of the particles, and are continuously updated as particles move
around in space. Application of the MLG to the existing sedimentation

4 code reduces the dependence of the CPU time on total particle number N
from N“ to N. This is the first application of the MLG to this type of
system. Areas of the code are identified in which implementation of more
advanced aspects of the MLG algorithm would allow efficient vectorization
of the code and result in additional reduction in CPU time. Other
applications for MD codes at MRL based on the MLG are also described.
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MOLECULAR DYNAMICS SIMULATION OF SEDIMENTATION
USING THE MONOTONIC LAGRANGIAN GRID

1. INTRODUCTION

A Molecular Dynamics (MD) code was recently written by one of us to study the
sedimentation behaviour of solid RDX particles in liquid TNT {1]1. This process occurs
during the cast filling of military ordnance with the explosive Composition B, a
mixture of 60% RDX and 40% TNT. One of the major applications planned for the
code was to study the effect of the RDX particle size distribution on the sediment
density. Simulations were reported for suspensions with a maximum number of 200
particles. When all particles were the same size the calculations showed that the
packing density was always less than the equivalent close packed structure and
depended on the particle radius, with an increase in radius leading to a decrease in
sediment density. When the sample consisted of particles of two distinct sizes then
fractionation was found to occur. In all cases, the larger particles settled before the
smaller particles, giving rise to a layer of small particles on top of the sediment.

Simulations of realistic particle size distributions with the code reported in
[1] are not possible because of the restriction on the total number of particles which
can be conveniently calculated. This is due to the relatively inefficient algorithm
used for tracking particles and computing interparticle forcgs. In the method
described in (1] the total computational time increases as N, where N is the total
number of particles in the simulation.

Various algorithms have been devised to reduce this N2 dependency.
Scalar sorting procedures have been developed which scale linearly with N or N2nN
[2], and vectorizable algorithms using neighbour list techniques have also been
developed [3]. None of these methods is particularly suitable however for large
three-dimensional simulations or vector supercomputers. The cost of the scalar
methods is still prohibitive for large simulations, and the neighbour list techniques
have large storage requirements and are also not ideal for large systems. None of
these techniques has been applied to the code described in [1].

A new algorithm for keeping track of near neighbour relationships has
recently been described (4, 5. The scheme is based on constructing a "monotonic
Lagrangian grid" (MLQ), a data structure where adjacent particles in space have close
grid indices. The computational cost of the scheme scales as N, and the algorithm
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vectorizes easily using data from contiguous memory locations. The MLG has already
been applied to several MD calculations and has been shown to be very efficient when
large numbers of particles are used (6, 7, 8].

The purpose of this communication is to report on our progress in

implementing the MLG algorithm into the code reported in [1]. We are interested in
the MLG in particular for several reasons:

(6))

(61Y]

(iii)

Since writing the code described in {1) we have gained access to a CRAY
X-MP/14 supercomputer. The architecture of this machine is significantly
different from that of the VAX 8700 computer on which the code was first
developed. One of the limitations on the computational speed of a VAX, or
any scalar computer, is that a separate instruction is required each time a
number is moved from the memory to the Central Processor Unit (CPU). The
CRAY overcomes this limitation by utilizing a pipeline architecture.
Computations on elements within the pipeline are performed more quickly than
in scalar mode because successive elements in the pipeline are automatically
moved into the CPU without the need for a separate instruction for each
element. Increases of fifty or more in overall computational speed are easily
obtained for programs which are designed to make optimum use of this pipeline
architecture. Obviously any changes we make to the code should be capable of
fully utilizing this feature (such a code is said to be fully "vectorized"). The
MLG algorithm is ideally suited to this task.

We have in mind other applications for MD codes at MRL which would benefit
considerably from the use of the MLG. We have for some time been interested
in the general area of high velocity impact and penetration. To date our
approach to this work has been through the use of large Eulerian or Lagrangian
finite difference codes such as the HULL code developed by Systems, Science
and Software for the US Air Force, and now maintained by Orlando
Technology. Such codes are not the optimum approach however when large
amounts of fragmentation or cratering occur. In these cases a particle
approach such as the Smooth Particle Hydrodynamics (SPH) scheme described
by Monaghan seems more appropriate {9]. In the SPH method the continuum
equations of hydrodynamics are replaced by particles which simulate the fluid
flow. Again, the problem of tracking particles, and their nearest neighbours,
appears. SPH codes have been run on a CRAY supercomputer using a linked
list algorithm for tracking nearest neighbours, but large amounts of storage
were required [10]. It seems likely that the efficiency of SPH codes could be
improved significantly by the addition of MLG algorithms. We are currently
evaluating the possibility of work along these lines.

Another area of more immediate interest is the simulation of shock waves in
solids. We are currently developing an experimental facility to make precise
measurements of shock Hugoniots in selected materials [11]. Concurrent with
this experimental work we intend to calculate some Hugoniots from
microscopic theories using ab-initio potentials. This will require a knowledge
of the shockfront thickness, and we intend to calculate this using an MD code
to simulate the propagation of the shock through the crystal. Our initial
interest will be in alkali halide crystals, in which case the MLG will be of no
use to us. The alkali halides, being ionic crystals, have long range Coulomb
potentials which require calculation of Ewald sums, and all particles must be
considered in the force calculation. The MLG will become of great benefit
when we consider extensions to molecular crystals, where only near neighbour
interactions will need to be considered.




The objective of the work reported here was to demonstrate that the
sedimentation code could be implemented in MLG form, and to reduce the CPU time
for a given number of cycles from an N“ dependency to one which scales linearly as
N. In this we have been successful. Further improvements could be made,
particularly with regard to vectorization of the code.

2. THE MLG SEDIMENTATION CODE

A detailed description of MLG algorithms has already been given by Boris (4], and
Lambrakos and Boris [5]. Here we briefly review those aspects of the MLG relevant
to the sedimentation code. Consider N particles randomly distributed in three-
dimensional space. For many physical systems, including the sedimenting system
studied here, the motion of any given particle is largely unaffected by most of the N-1
other particles in the system. Typically, the particle will be significantly influenced
by only a relatively small number of nearby particles. These are defined to be the
particles’ "nearest neighbours". Finding the nearest neighbours in an efficient manner
is a central part of any MD simulation. A natural choice is to calculate the distance
between the particle and the N-1 other particles in the system. A cutoff radius R is
then defined such that particles which are separated by a distance greater than R
have negligible effect on one another. The time taken to calculate the force on the
given particle is then reduced because only those particles within the cutoff radius R
need to be considered. The difficulty with this approach is that calculating the
distance to each of the N-1 other particles is almost as expensive as including all N-1
particles in the force calculation.

The MLG algorithm was designed to be a highly efficient method for
solving this nearest neighbours problem. The data structure is arranged so that a
particle’s nearest neighbours are readily identified, but without the need to continually
calculate the distance to each of the other N-1 particles. The basic idea of the MLG
is to assign to each particle a set of three indices, (i, j, k), so that particles which are
near one another in real space have indices differing from one another by only small
integer values. Let the x, y and z coordinates of a particle with MLG indices G, j, k)
be denoted by Xd,j,k), Y(i,jk) and Z3,j,k). The assignment of the MLG indices to the
N randomly distributed particles is carried out according to the following monotonic
prescription:

X@,j,k s X(i+1,5,k) for 1sis NX-1
YG,j,K) s YG,j+1,k) for 1s js NY -1 o
23,k s 2(,j,k+1) for 15 ks NZ-1,

where N = NX x NY x NZ. This ordering guarantees that particles which are
near one another in space have close grid indices. Hence a particle’s nearest
neighbours can always be found by considering small index offscts, rather than by
imposing some condition on the separation of particles in space. If a maximum index
offset Nc is defined, then computations for each particle are only made for those
particles with index offsets less than Nc' In the computer code itself the nearest
neighbours are identified by constructing a nearest-neighbours template (NNT) based




on this maximum index offset. The NNT specifies exactly which nearest-neighbours
will be used in the force calculations, and is defined by a main grid location and a
fixed number of close locations defined by N,,. The size of the NNT will depend on
the particle density and the relative level of order in the system. N, typically has a
small integer value in the range 3 to 7, although the selection of the value to be used
for a given calculation usually requires some experimentation.

As the system evolves in time and particles pass one another in space the
monotonic mapping of positions onto grid indices must be continuously updated to
maintain the correct ordering., This is done by a process known as "swapping”. As
two particles move past each other in real space the information describing these two
objects is moved to different locations in computer memory. Swapping is an iterative
process, and the number of iterations will depend on the extent to which the particle
motion disrupts the monotonic indexing. For accurate integration of the equations of
motion two particles will generally move far less than a typical separation distance
per timestep. Under these conditions only slight disruption of the MLG indexing
occurs and very few swaps are required to restore correct MLG order. In the code
itself a swap is executed by checking to see if there are any violations of the
conditions imposed by equation (1). If a violation is found for a particular set of
indices then all the information describing the two objects is exchanged between the
two grid locations. This scheme has been shown to require very few swaps per
timestep, and the relative computational cost of the swapping has been found to be
very small [4, 5).

The structure of a typical MLG MD code is shown in Figure 1. First an
initialization subroutine is called to assign positions and velocities to each of the
particles. Next the iterative swapping process is performed to place all arrays in
MLG order, and then a nearest-neighbours template (NND) is defined. The time
evolution of the system can then commence. Separate subroutines first calculate the
total force on each particle in the system, and then integrate the equations of motion
over a time step At. Boundary conditions are then applied. Next a monotonicity
check is made to see if the system is still in MLG order. If it is, the time step is
updated and the cycle is repeated. If not, the iterative swapping process is performed
until MLG order is restored, the time step is updated, and the cycle repeats.

Rather than trying to convert the sedimentation code described in [1] into
MLG form, it was easier to start from a basic MLG code having the structure shown in
Figure 1, and then transfer appropriate subroutines from the old code into the MLG
code. The more important of these were the subroutine to calculate the force arrays,
and the subroutine to integrate the equations of motion.

The code described in [1) simulates the motion of N "macroscopic"
particles (i.e. having particle sizes from 10 um to 100 um) in a viscous medium subject
to the force of gravity, and to their own mutual repulsion when in contact. The
particles are confined to a container of definite dimensions, and a particle/floor force
is defined so that the particles will eventually come to rest at the bottom of the
contginer. Gravity is taken to act in the negative z direction, and periodic boundary
conditions are applied in the x and y directions.

A Lennard-Jones (LJ) potential was used to calculate the interparticle

forces Fl j.
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where d is a unit vector along the interparticle line, r.. is the particle distance
between particles i and j, and the A; and C; are cons{ants This particular form of
the force allowed for the possibility o}' a mxxture of particles of different sizes, and
the splitting of the force constant terms into the product of two one-dimensional
arrays aided vectorization of the code. The constants A; and C; are different from
the LJ parameters used in [1], and their values are given in Table 1. Theuseof a
Lennard-Jones potential is more common in atomic systems, but i* was also found to
be very suited to the sedimenting system studied here and in [1]. The particles are
assumed to be "soft” spheres. This was necessary to overcome numerical stability
problems, as well as reducing particle overlap. In (1] the force was calculated using a
table look-up, and was set to zero unless the particles were touching or overlapping.
In the code described here the force was calculated from equation (2) for each particle
for each time step, and no cutoff distance was used, the range of the force being
governed by the size of the NNT, which is discussed in the next paragraph.

The viscous force acting on each particle is the same as in [1] and is given
by

FiV = - 6émyr lvi ’ (&)}

where 5 is the liquid phase vxscosny, : is the radius of particle i, and v; is the velocity
of particle i.

The particle-floor force has the form

13
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where rfl°°t is the distance between particle i and the bottom of the container, K;
isa onstant for patt;& t¥pe i, and k is & unit vector in the z direction.
If r; 99T > r; we set F} '°°T = 0. The K; values are given in Table 1

Table 1 Values of constants used in the MLG code

Particle 1/24 1/2 1/12 _1/2 1/13
radius (m) Ai J m*'“) Ci J m*'“) Ki (N m)
30 2.20 x 1073 2.54x 1074 6.48 x 1076
50 3.20 x 1073 5.28 x 1074 1.21 x 1075




We found little difficulty in getting the sedimentation code running in MLG
form, although some care had to be exercised in the choice of the NNT. The method
of choosing an NNT is to first choose a template which is obviously too big. Once the
code is working satisfactorily with this NNT then gradual reductions in the size of the
template can be made until problems are encountered. At this stage the NNT is too
small and needs to be enlarged slightly. Further runs are then made with the NNT at
this size to check that it is optimum for the system being studied. We used an NNT
almost identical to the one used in previous applications of the MLG to atomic and
molecular systems [6, 8], with a maximum index offset value of Nc = 3. This was
found to give acceptable results for all the simulations performed, and for the range
of densities encountered.

3. RESULTS

Having found a suitable size for the NNT and established that the sedimentation code
worked in ML.G form, our next objective was to investigate the timing characteristics
of the code. To do this we made a series of runs with both the old and the new codes
for increasing numbers of particles. The resuits are shown in Table 2 and Figure 2.
The total CPU time for each run has been split into the time taken for the first cycle,
and then the time taken for a further 100 cycles. We did this because we found that
the time taken for the initial placement of the particles in the container was taking an
appreciable fraction of the CPU time for such short runs, and was preventing us from
making reliable timing estimates. Initially, the particles are placed randomly in the
box such that no two particles overlap. As the number of particles increases, many
more tries are needed to find empty spaces which the particles can occupy, and the
time taken to place them randomly can increase dramatically. This is shown quite
clearly in the data presented in Table 2.

Table 2 Timing Comparison Runs

CPU Time (seconds)

Number 0Old Code (VAX) MLG Code (VAX) MLG Ccde (CRAY)
of Particles

lcycle 100cycles 1cycle 100cycles 1cycle 100 cycles

125 24 47 6.5 143 0.94 13
216 31 135 46 272 7.6 31
343 64 336 83 431 11 49
512 225 698 289 647 41 73
729 372 1761 332 956 48 102
1000 981 2805 671 1341 ' 69 138

10




Plots of run time for 100 cycles versus total number of particles are shown
in Figure 2 for both the old code and the MLG code onp VAX 8700, and for the MLG
code on a CRAY X-MP/14. The old code shows the N“ dependency (gradient equals
1.98), as previously observed (11, while the MLG code on the VAX shows a linear
dependence on N (gradient equals 1.08), as expected. It is interesting to note that the
MLG code on the VAX takes longer to run 100 cycles than does the old code, when
small particle numbers are considered. This is not unexpected because of the
additional initial computational overheads associated with the MLG, and the use of
equation (2) instead of a look-up table. Crossover occurs around N = 500, and for N =
1000 the MLG version is more than twice as fast. It should be noted that the MLG
was devised with particle numbers of order 10,000 or greater in mind.

The MLG code when run on the CRAY also shows a linear dependence on N
(gradient equals 0.97). Independent benchmark runs on the VAX 8700 and CRAY X-
MP/14 of a code which is only slightly vectorizable show an increase in speed on the
CRAY of a factor of 8 {12]. As N increases from 125 to 1000 the ratio of VAX time
to CRAY time increases slightly from 8 to almost 10, indicating that the vectorization
capabilities of the MLG are only just beginning to be utilised. This is certainly not
surprising considering the relatively small number of particles we are using. In an
MLG code based on a "regular MLG" structure all of the computationally intensive
parts of the code are contained within a nested set of DO loops over the indices i, j
and k. In our sample of 1000 particles we have NX = NY = NZ = 10, which means that
the innermost loop has a count of only 10. On a CRAY computer however it is only
the innermost loop which vectorizes, and a count of 10 is far too short for the increase
in speed due to the pipeline architecture to be effective. A simple way of
overcoming this problem is to use a "skew-periodic” MLG structure {4,5]. In essence,
this maps a plane of points onto a single vector, so that the innermost loop now has a
count of, say, NX x NY. For N = 512 this would result in vectors of length 64, which
is a near optimum length for a CRAY computer. This was not done in the present
study however.

It should be noted that there are physical situations in which very efficient
vectorization of MLG codes could be achieved without the need to implement a skew-
periodic MLG. One of these is the application to a shock wave in a crystal mentioned
in the Introduction. In this situation there will generally be many more atoms in the
direction of propagation of the shock than at right angles to it. By choosing the
innermost MLG index to index particles in this direction the innermost loop will be the
largest loop and efficient vectorization will result.

We also made several production runs of the new code on both the VAX and
the CRAY. It was important to do this to check that the NNT was working correctly
as the density increased in the sediment phase, and also to fine tune the constants A;
and C;. We used a total number of 512 particles, 307 with a radius of 30 um, and 205
with a radius of 50 um. Complete sedimentation occurred in all cases within 6,000
cycles, using a fixed time step of 200 us. Total run time agreed closely with
estimates from the 100 cycle runs.

Figure 3 shows the probability of finding a particle as a function of
particle height above the floor of the container for one of the VAX simulations. This
illustrates the amount of fractionation which has taken place. We are much more
likely to find a larger particle at the bottom of the container than a smaller one, and
we have zero probability of finding a large particle at a height greater than 320 um.
Consequently, a layer of 30 um particles will be formed on top of the sediment.

These results are similar to the ones reported in [1] for the 200 particle runs.
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4. CONCLUSION

We have rewritten the MD code described in [1) to include the MLG algorithm
described in (4] and [5]. _ As a result, the CPU time for a given number of cycles has
been reduced from an N“ dependency to one which scales linearly with N. This
reduction in computing time has enabled us to make a number of production runs with
up to 512 particles, whereas with the previous code we were effectively restricted to
a maximum of 200. Even with this improvement, the code would still be time
consuming and expensive to run if realistic particle size distributions were

employed. A further increase in the speed of the code rould be made if the regular
MLG were replaced with a skew-periodic MLLG. This would allow very efficient
vectorization of the code and would increase speed by up to an order of magnitude.
Improvements in speed could also be made if a table look-up were used instead of
equation 2, although this would not be as simple to implement as in the earlier version
of the code [1), as the MLG data structure requires a gather operation to be performed
if a table look-up is used. If each of these programming techniques could be
implemented in the code, then simulations of realistic particle size distributions could

be made.
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Figure 1  Flow chart for a typical MLG based MD code.
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Figure 8 Probability of finding a particle as a function of particle height above

the floor of the container. 512 particles in total, 307 with radius of
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